Liban – Mai 2011 – Série S – Exercice

Soit la fonction f définie sur $[0; +\infty[$ par : $f(x) = x + e^{-x}$

On note (\mathscr{C}) la courbe représentative de f dans un repère orthonormal $(\mathbf{O};\vec{i}\,,\vec{j}\,).$

Partie A

- **1.** Etudier les variations de la fonction $f \sup [0; +\infty]$.
- 2. Déterminer la limite de f en $+\infty$.
- **3.** Montrer que (\mathscr{C}) admet une asymptote oblique dont on précisera une équation.

Partie B

On considère la suite $(u_n)_{n\geq 1}$ à termes positifs définie par : $u_1=0$ et, pour tout entier naturel n non nul : $u_{n+1}=f(u_n)=u_n+e^{-u_n}$.

- **1.** Démontrer que, pour tout réel x positif, $\ln(1+x) \le x$. On pourra étudier la fonction g définie sur $[0;+\infty[$ par $g(x)=x-\ln(1+x)$.
- **2.** En déduire que, pour tout entier naturel n non nul, $\ln(n+1) \le \ln(n) + \frac{1}{n}$.
- **3.** Démontrer que, pour tout entier naturel n non nul, $f(\ln n) = \ln(n) + \frac{1}{n}$.
- **4.** Démontrer par récurrence que, pour tout entier naturel n non nul, $\ln(n) \le u_n$.
- **5.** En déduire la limite de la suite $(u_n)_{n\geq 1}$.

Dans la suite de l'exercice, on admet que, pour tout entier n supérieur ou égal à 2, $u_n \le 1 + \frac{1}{2} + ... + \frac{1}{n-1}$.

- **6. a.** Démontrer que, pour tout entier k supérieur ou égal à 2, on a : $\frac{1}{k} \le \int_{k-1}^{k} \frac{1}{x} dx$
 - **b.** En déduire que, pour tout entier n supérieur ou égal à 2, on a : $u_n \le 1 + \ln(n-1)$
- 7. Pour tout entier naturel n supérieur ou égal à 2, on a montré que : $\ln(n) \le u_n \le 1 + \ln(n-1)$

Démontrer que la suite $\left(\frac{u_n}{\ln(n)}\right)_{n\geq 2}$ converge vers 1.

Analyse

Cet exercice consiste fondamentalement en l'étude d'une suite récurrente du type $u_{n+1} = f(u_n)$. La première partie consiste classiquement en l'étude de la fonction f. La

seconde, plus technique, vise à établir le joli résultat $\lim_{n\to+\infty} \frac{u_n}{\ln(n)} = 1$ qui exprime l'équivalence

(notion hors programme de Terminale) entre u_n et $\ln(n)$: en simplifiant, pour n grand, u_n se comporte comme le logarithme népérien de n (on parle de « comportement asymptotique de la suite (u_n) »). Ce résultat est assez inattendu au regard de l'expression de f(x) ... Non?

Résolution

Partie A

Question 1.

La fonction identité ($x \mapsto x$) est dérivable sur \mathbb{R} et donc à fortiori sur l'intervalle $[0; +\infty[$.

La fonction $x \mapsto -x$, opposée de la fonction identité est également dérivable sur \mathbb{R} et donc sur l'intervalle $[0; +\infty[$. La fonction exponentielle étant dérivable sur \mathbb{R} , on en déduit finalement que la fonction composée $x \mapsto e^{-x}$ est dérivable sur $[0; +\infty[$.

La fonction f est ainsi dérivable sur $[0; +\infty[$ comme somme de deux fonctions dérivables sur cet intervalle.

Pour tout réel x, on a :
$$f'(x) = 1 - e^{-x} = 1 - \frac{1}{e^x} = \frac{e^x - 1}{e^x}$$
.

La fonction exponentielle prenant des valeurs strictement positives sur \mathbb{R} , on en déduit que le signe de f'(x) est celui de la différence $e^x - 1$.

On a : $e^x - 1 = 0 \Leftrightarrow e^x = 1 \Leftrightarrow x = 0$. Par ailleurs, la fonction exponentielle étant strictement croissante sur \mathbb{R} , on a : $x > 0 \Leftrightarrow e^x > 1$.

En conclusion:

- f'(0) = 1.
- $\forall x \in \mathbb{R}_+^*, f'(x) > 0.$

On déduit de l'étude précédente :

La fonction f est strictement croissante sur l'intervalle $[0; +\infty[$.

Question 2.

On a immédiatement : $\lim_{x \to +\infty} x = +\infty$.

Par ailleurs : $\lim_{x \to +\infty} e^x = +\infty$ d'où $\lim_{x \to +\infty} e^{-x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$.

Par addition, il vient donc : $\lim_{x \to +\infty} f(x) = +\infty$.

$$\lim_{x \to +\infty} f(x) = +\infty$$

Question 3.

D'après la question précédente, nous avons :

$$\lim_{x \to +\infty} \left[f(x) - x \right] = \lim_{x \to +\infty} e^{-x} = 0$$

On en déduit immédiatement :

La courbe représentative (\mathscr{C}) de la fonction f admet, au voisinage de $+\infty$, une asymptote oblique d'équation : y = x.

Partie B

Question 1.

Suivons la suggestion de l'énoncé, et considérons la fonction g définie sur l'intervalle $[0; +\infty[$ par : $g: x \mapsto g(x) = x - \ln(1+x)$.

On a facilement: $g(0) = 0 - \ln(1+0) = -\ln 1 = 0$.

Par ailleurs, la fonction g est dérivable sur l'intervalle $[0; +\infty[$ comme différence de deux fonctions dérivables sur cette intervalle (la fonction identité dérivable sur \mathbb{R} et donc sur l'intervalle $[0; +\infty[$ et la fonction $x \mapsto \ln(1+x)$ dérivable sur $]-1; +\infty[$ et donc sur $[0; +\infty[$) et pour tout réel x positif, on a :

$$g'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x}$$

Pour tout réel x positif, on a : $x \ge 0$ et $1+x \ge 1 > 0$, d'où $g'(x) = \frac{x}{1+x} \ge 0$.

Ainsi, la fonction g est croissante sur l'intervalle $[0; +\infty[$ et il vient :

$$x \ge 0 \Rightarrow g(x) \ge g(0) = 0$$

Ainsi, on a : $\forall x \in [0; +\infty[, g(x) \ge 0, \text{ c'est-à-dire} : \forall x \in [0; +\infty[, x-\ln(1+x) \ge 0.$ Finalement :

Pour tout réel x positif, on a : $x \ge \ln(1+x)$.

Question 2.

Pour tout entier naturel n non nul, on a : $\frac{1}{n} > 0$ et donc, d'après la question précédente :

$$\frac{1}{n} \ge \ln\left(1 + \frac{1}{n}\right)$$

Or, on a:

$$\frac{1}{n} \ge \ln\left(1 + \frac{1}{n}\right)$$

$$\Leftrightarrow \frac{1}{n} \ge \ln\frac{n+1}{n}$$

$$\Leftrightarrow \frac{1}{n} \ge \ln\left(n+1\right) - \ln\left(n\right)$$

$$\Leftrightarrow \ln\left(n+1\right) \le \frac{1}{n} + \ln\left(n\right)$$

Pour tout entier naturel *n* non nul, on a :

$$\ln\left(n+1\right) \le \frac{1}{n} + \ln\left(n\right)$$

Question 3.

Pour tout entier naturel *n* non nul, on a :

$$f(\ln n) = \ln(n) + e^{-\ln(n)} = \ln(n) + \frac{1}{e^{\ln(n)}} = \ln(n) + \frac{1}{n}$$

Pour tout entier naturel n non nul, on a:

$$f(\ln n) = \ln(n) + \frac{1}{n}$$

Question 4.

Initialisation.

Pour n = 1, on a: $u_1 = 0$ et $\ln 1 = 0$.

On a bien : $\ln 1 \le u_1$.

La propriété est vérifiée au rang 1, elle est initialisée.

Hérédité.

Soit *n* un entier naturel non nul quelconque fixé.

On suppose que l'on a : $\ln(n) \le u_n$.

On a vu que la fonction f était strictement croissante sur l'intervalle $[0; +\infty[$. On en déduit donc :

$$f(\ln(n)) \le f(u_n)$$

Soit, en tenant compte du résultat de la question précédente :

$$\ln\left(n\right) + \frac{1}{n} \le u_{n+1}$$

Enfin, la question 2 nous permet de conclure :

$$\ln\left(n+1\right) \le u_{n+1}$$

La propriété est ainsi vérifiée au rang n+1, elle est héréditaire.

Conclusion.

La propriété considérée est vraie pour tout entier naturel *n* non nul.

Pour tout entier naturel *n* non nul, on a :

$$\ln(n) \le u_n$$

Question 5.

Comme on a : $\lim_{n\to+\infty} \ln(n) = +\infty$, il vient (comparaison) d'après le résultat précédent :

$$\lim_{n\to +\infty} u_n = +\infty.$$

$$\lim_{n\to +\infty} u_n = +\infty$$

Question 6.a.

Soit k un entier supérieur ou égal à 2.

Considérons l'intervalle [k-1;k] inclus dans \mathbb{R}_+^* . La fonction inverse étant strictement

décroissante sur \mathbb{R}_{+}^{*} , on a, pour tout x réel de l'intervalle [k-1; k] : $\frac{1}{k} \le \frac{1}{x} \le \frac{1}{k-1}$.

On en déduit alors (intégrale et ordre) : $\int_{k-1}^{k} \frac{1}{k} dx \le \int_{k-1}^{k} \frac{1}{x} dx \le \int_{k-1}^{k} \frac{1}{k-1} dx$.

On a immédiatement :
$$\int_{k-1}^{k} \frac{1}{k} dx = \frac{1}{k} \int_{k-1}^{k} dx = \frac{1}{k} \times (k - (k-1)) = \frac{1}{k}.$$

La première inégalité se récrit donc : $\frac{1}{k} \le \int_{k-1}^{k} \frac{1}{x} dx$. Le résultat est ainsi établi.

Pour tout entier k supérieur ou égal à 2, on a :

$$\frac{1}{k} \le \int_{k-1}^{k} \frac{1}{x} dx$$

Question 6.b.

D'après l'énoncé, on a, pour tout entier supérieur ou égal à 2 :

$$u_n \le 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$$

D'après la question précédente il vient alors :

$$u_n \le 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} \le 1 + \int_{1}^{2} \frac{1}{x} dx + \int_{2}^{3} \frac{1}{x} dx + \dots + \int_{n-2}^{n-1} \frac{1}{x} dx = 1 + \int_{1}^{n-1} \frac{1}{x} dx$$

Or, on a:
$$\int_{1}^{n-1} \frac{1}{x} dx = \left[\ln x \right]_{1}^{n-1} = \ln (n-1) - \ln 1 = \ln (n-1).$$

L'inégalité se récrit alors : $u_n \le 1 + \ln(n-1)$. Le résultat est ainsi établi.

Pour tout entier supérieur ou égal à 2, on a :

$$u_n \leq 1 + \ln(n-1)$$

Question 7.

Des questions 4 et 6.b, on tire que pour tout entier supérieur ou égal à 2, on a :

$$\ln(n) \le u_n \le 1 + \ln(n-1)$$

On a : $n \ge 2 \Rightarrow \ln(n) \ge \ln 2 > 0$. On déduit alors de la double inégalité précédente :

$$\frac{\ln(n)}{\ln(n)} \le \frac{u_n}{\ln(n)} \le \frac{1 + \ln(n-1)}{\ln(n)}$$

Soit:
$$1 \le \frac{u_n}{\ln(n)} \le \frac{1 + \ln(n-1)}{\ln(n)}$$
.

Or, on a:

$$\frac{1 + \ln(n-1)}{\ln(n)} = \frac{1}{\ln(n)} + \frac{\ln(n-1)}{\ln(n)} = \frac{1}{\ln(n)} + \frac{\ln\left[n\left(1 - \frac{1}{n}\right)\right]}{\ln(n)}$$

$$= \frac{1}{\ln(n)} + \frac{\ln(n) + \ln\left(1 - \frac{1}{n}\right)}{\ln(n)} = 1 + \frac{1}{\ln(n)} + \frac{\ln\left(1 - \frac{1}{n}\right)}{\ln(n)}$$

$$= 1 + \frac{1 + \ln\left(1 - \frac{1}{n}\right)}{\ln(n)}$$

En définitive on a :

$$1 \le \frac{u_n}{\ln(n)} \le 1 + \frac{1 + \ln\left(1 - \frac{1}{n}\right)}{\ln(n)}$$

On a: $\lim_{n\to +\infty}\frac{1}{n}=0$ et donc $\lim_{n\to +\infty}\left(-\frac{1}{n}\right)=0$, d'où (somme): $\lim_{n\to +\infty}\left(1-\frac{1}{n}\right)=1$ puis (composition et continuité de la fonction ln en 1): $\lim_{n\to +\infty}\ln\left(1-\frac{1}{n}\right)=\ln 1=0$. Enfin (somme):

$$\lim_{n \to +\infty} \left[1 + \ln \left(1 - \frac{1}{n} \right) \right] = 1$$

Comme $\lim_{n \to +\infty} \ln(n) = +\infty$, il vient (division): $\lim_{n \to +\infty} \frac{1 + \ln(1 - \frac{1}{n})}{\ln(n)} = 0$.

Finalement:
$$\lim_{n \to +\infty} \left[1 + \frac{1 + \ln\left(1 - \frac{1}{n}\right)}{\ln\left(n\right)} \right] = 1.$$

Le théorème des gendarmes nous permet alors de conclure : $\lim_{n\to+\infty} u_n = 1$.

$$\lim_{n\to+\infty}u_n=1$$