Pondichéry – Avril 2012 – Série S – Exercice

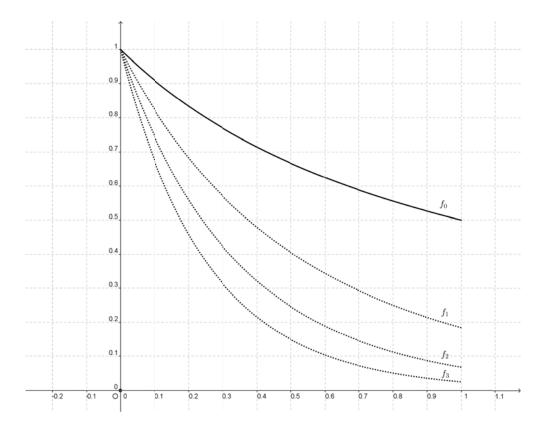
On considère les suites (I_n) et (J_n) définies pour tout entier naturel n par :

$$I_n = \int_0^1 \frac{e^{-nx}}{1+x} dx$$
 et $J_n = \int_0^1 \frac{e^{-nx}}{(1+x)^2} dx$

1. Sont représentées ci-dessous les fonctions f_n définies sur l'intervalle $\begin{bmatrix} 0;1 \end{bmatrix}$ par :

$$f_n(x) = \frac{e^{-nx}}{1+x}$$

pour différentes valeurs de n:



- **a.** Formuler une conjecture sur le sens de variation de la suite (I_n) en expliquant la démarche.
- b. Démontrer cette conjecture.

2. **a.** Montrer que pour tout $n \ge 0$ et pour tout nombre réel x de l'intervalle $\begin{bmatrix} 0;1 \end{bmatrix}$:

$$0 \le \frac{e^{-nx}}{(1+x)^2} \le \frac{e^{-nx}}{1+x} \le e^{-nx}$$

- **b.** Montrer que les suites (I_n) et (J_n) sont convergentes et déterminer leur limite.
- 3. **a.** Montrer, en effectuant une intégration par parties, que pour tout entier $n \ge 1$:

$$I_n = \frac{1}{n} \left(1 - \frac{e^{-n}}{2} - J_n \right)$$

b. En déduire $\lim_{n\to+\infty} nI_n$.

Analyse

Suites et intégrales. Deux thèmes classiques qui donnent souvent des exercices intéressants lorsqu'on les couple. C'est le cas ici et finalement la convergence des deux suites fait appel à une démarche très classique en analyse : la majoration. Au-delà, on utilise des propriétés classique des suites (notamment le théorème des gendarmes) et des intégrales (positivité, intégration par parties).

Résolution

Question 1.a.

La fonction exponentielle prend des valeurs strictement positives sur \mathbb{R} , il en va donc de même, pour tout entier naturel n, pour la fonction $x \mapsto e^{-nx}$.

Par ailleurs, on a: $\forall x \in [0;1], 1+x \in [1;2]$ et donc 1+x>0.

En définitive, pour tout x réel de l'intervalle [0;1], la fonction $f_n: x \mapsto \frac{e^{-nx}}{1+x}$ prend des valeurs strictement positives.

De fait, l'intégrale $I_n = \int_0^1 \frac{e^{-nx}}{1+x} dx$ correspond à l'aire sous la courbe de la fonction f_n sur l'intervalle [0;1].

D'après les représentations graphiques fournies :

- La courbe représentative de la fonction f_1 est située sous la courbe représentative de la fonction f_0 et donc (positivité de l'intégrale) : $\int_0^1 \frac{e^{-1 \times x}}{1+x} dx \le \int_0^1 \frac{e^{-0 \times x}}{1+x} dx$, c'est-à-dire $I_1 \le I_0$.
- La courbe représentative de la fonction f_2 est située sous la courbe représentative de la fonction f_1 et donc (positivité de l'intégrale) : $\int_0^1 \frac{e^{-2 \times x}}{1+x} dx \le \int_0^1 \frac{e^{-1 \times x}}{1+x} dx$, c'est-à-dire $I_2 \le I_1$.
- La courbe représentative de la fonction f_3 est située sous la courbe représentative de la fonction f_2 et donc (positivité de l'intégrale) : $\int_0^1 \frac{e^{-3\times x}}{1+x} dx \le \int_0^1 \frac{e^{-2\times x}}{1+x} dx$, c'est-à-dire $I_3 \le I_2$.

Ainsi, il semblerait que la suite de ces aires, c'est-à-dire la suite (I_n) , soit décroissante.

Conjecture : la suite (I_n) est décroissante.

Question 1.b.

La démarche adoptée précédemment nous donne le « fil directeur » de la démonstration : d'après la positivité de l'intégrale, pour comparer I_n et I_{n+1} , il suffit de comparer les

fonctions f_n et f_{n+1} sur l'intervalle [0;1].

Pour tout n entier naturel, on a : n < n+1.

Pour tout réel x de l'intervalle [0;1], on aura donc : $nx \le (n+1)x$ puis $-nx \ge -(n+1)x$.

La fonction exponentielle étant strictement croissante sur \mathbb{R} et donc sur l'intervalle [0;1], on en déduit alors : $e^{-nx} \ge e^{-(n+1)x}$.

Le réel 1+x étant strictement positif, on en déduit : $\frac{e^{-nx}}{1+x} \ge \frac{e^{-(n+1)x}}{1+x}$, soit $f_n(x) \ge f_{n+1}(x)$.

La positivité de l'intégrale nous permet alors de conclure : $I_n \ge I_{n+1}$.

La conjecture de la question précédente est ainsi démontrée.

La suite (I_n) est décroissante.

Question 2.a.

Pour tout x réel de l'intervalle [0;1], on a : $1 \le 1+x$.

Le réel 1+x étant strictement positif, il en découle : $1\times(1+x)\le(1+x)\times(1+x)$, soit $1+x\le(1+x)^2$.

En combinant ces deux inégalités, il vient : $1 \le 1 + x \le (1 + x)^2$.

Les quantités étant strictement positives, on a alors, en considérant les inverses :

$$0 < \frac{1}{(1+x)^2} \le \frac{1}{1+x} \le 1$$

En multipliant enfin par le réel strictement positif e^{-nx} , on obtient :

$$0 < \frac{e^{-nx}}{(1+x)^2} \le \frac{e^{-nx}}{1+x} \le e^{-nx}$$

On a bien:

$$\forall n \in \mathbb{N}, \forall x \in [0;1], 0 \le \frac{e^{-nx}}{(1+x)^2} \le \frac{e^{-nx}}{1+x} \le e^{-nx}$$

Question 2.b.

La triple inégalité précédente combinée à la positivité de l'intégrale nous donne :

$$\forall n \in \mathbb{N}, \int_0^1 0 \times dx \le \int_0^1 \frac{e^{-nx}}{(1+x)^2} dx \le \int_0^1 \frac{e^{-nx}}{1+x} dx \le \int_0^1 e^{-nx} dx$$

Soit:

$$\forall n \in \mathbb{N}, 0 \le J_n \le I_n \le \int_0^1 e^{-nx} dx$$

Or, on a facilement : $\int_0^1 e^{-nx} dx = \left[-\frac{1}{n} e^{-nx} \right]_0^1 = -\frac{1}{n} e^{-nx} - \left(-\frac{1}{n} e^{-nx} \right) = \frac{1}{n} - \frac{1}{n} e^{-n} = \frac{1}{n} (1 - e^{-n}).$ D'où :

$$\forall n \in \mathbb{N}, 0 \le J_n \le I_n \le \frac{1}{n} (1 - e^{-n})$$

On a: $\lim_{n\to+\infty} e^n = +\infty$ et donc: $\lim_{n\to+\infty} \frac{1}{e^n} = \lim_{n\to+\infty} e^{-n} = 0$, d'où $\lim_{n\to+\infty} \left(1 - e^{-n}\right) = 1$.

Par ailleurs: $\lim_{n\to+\infty} \frac{1}{n} = 0$. Il vient donc (produit): $\lim_{n\to+\infty} \left[\frac{1}{n} (1-e^{-n}) \right] = 0 \times 1 = 0$.

On en déduit finalement par encadrement (théorème des gendarmes) que les suites $\left(I_n\right)$ et $\left(J_n\right)$ sont convergentes et que l'on a : $\lim_{n\to+\infty}I_n=\lim_{n\to+\infty}J_n=0$.

Les suites
$$(I_n)$$
 et (J_n) sont convergentes et on a : $\lim_{n\to+\infty}I_n=\lim_{n\to+\infty}J_n=0$.

Remarque : d'après la question 1.b. la suite (I_n) est décroissante. D'après la triple inégalité ci-dessus, elle est également minorée par 0. De fait, elle est convergente.

On établit de façon similaire la décroissance de la suite (J_n) qui est elle aussi minorée par 0. Ici encore, la suite convergera donc.

Cette approche est intéressante mais ne nous donne pas les limites. A contrario, la double inégalité $\forall n \in \mathbb{N}, 0 \le J_n \le I_n \le \frac{1}{n} \left(1 - e^{-n}\right)$ nous permet de conclure directement à la convergence des deux suites et de donner leur limite commune ...

Question 3.a.

On a:
$$J_n = \int_0^1 \frac{e^{-nx}}{(1+x)^2} dx$$
.

La fonction $x \mapsto \frac{1}{(1+x)^2} = (1+x)^{-2}$ est continue sur l'intervalle [0;1] en tant que fonction

rationnelle. Elle y admet pour primitive la fonction $x \mapsto \frac{1}{-2+1} (1+x)^{-2+1} = -\frac{1}{1+x}$.

La fonction $x \mapsto e^{-nx}$ est dérivable sur \mathbb{R} comme composée de deux fonctions dérivables sur \mathbb{R} (la fonction linéaire $x \mapsto -nx$ et la fonction exponentielle). Elle est donc dérivable sur l'intervalle [0;1] et admet pour dérivée : $x \mapsto -ne^{-nx}$ également continue sur l'intervalle [0;1].

Nous pouvons donc procéder à une intégration par parties :

$$J_{n} = \int_{0}^{1} \frac{e^{-nx}}{(1+x)^{2}} dx$$

$$= \left[-\frac{1}{1+x} e^{-nx} \right]_{0}^{1} - \int_{0}^{1} \left(-\frac{1}{1+x} \right) \times \left(-n e^{-nx} \right) dx$$

$$= -\frac{1}{1+1} e^{-nx} - \left(-\frac{1}{1+0} e^{-nx} \right) - n \int_{0}^{1} \frac{e^{-nx}}{1+x} dx$$

$$= -\frac{1}{2} e^{-n} + 1 - n I_{n}$$

Soit: $nI_n = 1 - \frac{1}{2}e^{-n} - J_n$.

Pour tout *n* entier naturel non nul, il vient finalement : $I_n = \frac{1}{n} \left(1 - \frac{1}{2} e^{-n} - J_n \right)$.

$$\forall n \in \mathbb{N}^*, I_n = \frac{1}{n} \left(1 - \frac{1}{2} e^{-n} - J_n \right)$$

Question 3.a.

Comme $\lim_{n\to+\infty} e^{-n} = 0$ et $\lim_{n\to+\infty} J_n = 0$ (question 2.b.), il vient $\lim_{n\to+\infty} \left(1 - \frac{1}{2}e^{-n} - J_n\right) = 1$ et,

finalement: $\lim_{n \to +\infty} n I_n = 1$.

$$\lim_{n\to+\infty} n\,I_n=1$$

Remarque : on peut récrire ce résultat comme suit : $\lim_{n \to +\infty} \frac{I_n}{\frac{1}{n}} = 1$.

Ceci signifie que pour n « grand », on peut approcher I_n par $\frac{1}{n}$.

A titre d'illustration, nous donnons dans le tableau ci-dessous pour quelques valeurs de n, la valeur de I_n approchée à 10^{-6} et la valeur correspondante de $\frac{1}{n}$:

n	I_n	$\frac{1}{n}$
2	0,333 403	0,5
5	0,169 805	0,2
10	0,091 561	0,1
20	0,047 719	0,05
50	0,019 615	0,02
100	0,009 902	0,01

PanaMaths [7-7] Mai 2012