Synthèse de cours (Terminale ES) Dérivation : rappels et compléments

Rappels de 1ère

Nombre dérivé

Soit f une fonction définie sur un intervalle I et a un élément de I.

Si la limite $\lim_{h\to 0, h\neq 0} \frac{f(a+h)-f(a)}{h}$ existe, on la note « f'(a) » et on l'appelle « nombre dérivé de la fonction f en a ». Dans ce cas, on dit que « la fonction f est dérivable en a ».

Interprétation géométrique

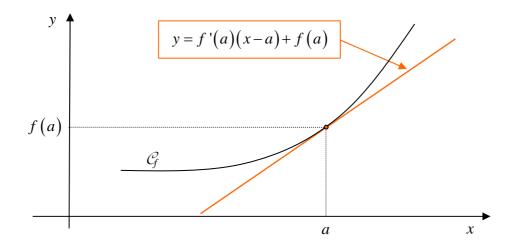
Soit f une fonction définie sur un intervalle I et a un élément de I. Soit \mathcal{C}_f la courbe représentative de f dans un repère.

Si f est dérivable en a **alors** admet une tangente au point (a; f(a)) et une équation de cette tangente est :

$$y = f'(a)(x-a) + f(a)$$

On en tire l'équation réduite :

$$y = f'(a).x + f(a) - f'(a).a$$



Fonction dérivée

Soit f une fonction définie sur un intervalle I.

Si f est dérivable pour tout x de I, on dit que « la fonction f est dérivable sur I » et on note « f » la fonction définie par :

$$I \to \mathbb{R}$$
$$x \mapsto f'(x)$$

La fonction f' est appelée « fonction dérivée de la fonction f ».

Fonctions dérivées des fonctions usuelles

Fonction	Dérivée	Intervalle I (maximal)
$x \mapsto k$ $(k \in \mathbb{R})$	$x \mapsto 0$	\mathbb{R}
$x \mapsto x$	$x \mapsto 1$	$\mathbb R$
$x \mapsto x^2$	$x \mapsto 2x$	\mathbb{R}
$x \mapsto \frac{1}{x}$	$x \mapsto -\frac{1}{x^2}$	\mathbb{R}^{-^*} ou \mathbb{R}^{+^*}
$x \mapsto \sqrt{x}$	$x \mapsto \frac{1}{2\sqrt{x}}$	\mathbb{R}^{+^*}
$x \mapsto x^n$ $(n \in \mathbb{Z}^*)$	$x \mapsto nx^{n-1}$	$\mathbb{R} (\operatorname{si} n > 0)$ $\mathbb{R}^{-*} \text{ ou } \mathbb{R}^{+*} (\operatorname{si} n < 0)$

Opérations et dérivation

Si f et g sont deux fonctions dérivables sur un intervalle I, la fonction g ne s'annulant pas sur I, et si k est un réel **alors** :

- La fonction f + g est dérivable sur I et on a : (f + g)' = f' + g';
- La fonction kf est dérivable sur I et on a : (kf)' = kf';
- La fonction fg est dérivable sur I et on a : (fg)' = f'g + fg';
- La fonction $\frac{1}{g}$ est dérivable sur I et on a : $\left(\frac{1}{g}\right)^{'} = -\frac{g'}{g^2}$;
- La fonction $\frac{f}{g}$ est dérivable sur I et on a : $\left(\frac{f}{g}\right) = \frac{f'g fg'}{g^2}$.

Fonctions dérivables et sens de variation

On suppose que f est une fonction dérivable sur un intervalle I.

- Si f est croissante sur I alors f est positive sur I $(\forall x \in I, f'(x) \ge 0)$;
- Si f est décroissante sur I alors f est négative sur I $(\forall x \in I, f'(x) \le 0)$;
- Si f est constante sur I alors f est nulle sur I $(\forall x \in I, f'(x) = 0)$;

On suppose que f est une fonction dérivable sur un intervalle I.

- Si f' est positive sur I ($\forall x \in I$, $f'(x) \ge 0$) alors f est croissante sur I;
- Si f est négative sur I ($\forall x \in I$, $f'(x) \le 0$) alors f est décroissante sur I;
- Si f est nulle sur I ($\forall x \in I$, f'(x) = 0) alors f est constante sur I;

Complément sur la dérivation : dérivée d'une fonction composée

Propriété

Soit f une fonction dérivable sur un intervalle I et prenant ses valeurs dans un ensemble inclus dans un intervalle J.

Soit *g* une fonction dérivable sur l'intervalle J.

Dans ces conditions, la fonction gof est dérivable sur l'intervalle I et on a :

$$(gof)' = f' \times (g'of)$$

Soit:

$$(gof)'(x) = f'(x) \times (g'of)(x) = f'(x) \times g'(f(x))$$

Formulaire

Pour toute fonction u définie et dérivable sur un intervalle I (et, éventuellement, ne s'annulant pas sur I), on a :

Fonction	Dérivée
$x \mapsto u^n(x)$ (<i>n</i> entier différent de 1)	$x \mapsto n.u'(x).u(x)$
$x \mapsto \sqrt{u(x)}$	$x \mapsto \frac{u'(x)}{2\sqrt{u(x)}}$

Remarque : dans le deuxième cas, la fonction u est à valeurs strictement positives.